(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

-(x, 0) → x
-(s(x), s(y)) → -(x, y)
<=(0, y) → true
<=(s(x), 0) → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
-(s(x), s(y)) →+ -(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
-, <=, f

They will be analysed ascendingly in the following order:
- < f
<= < f

(8) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
-, <=, f

They will be analysed ascendingly in the following order:
- < f
<= < f

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)

Induction Step:
-(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
<=, f

They will be analysed ascendingly in the following order:
<= < f

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
<=(gen_0':s3_0(n285_0), gen_0':s3_0(n285_0)) → true, rt ∈ Ω(1 + n2850)

Induction Base:
<=(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true

Induction Step:
<=(gen_0':s3_0(+(n285_0, 1)), gen_0':s3_0(+(n285_0, 1))) →RΩ(1)
<=(gen_0':s3_0(n285_0), gen_0':s3_0(n285_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
<=(gen_0':s3_0(n285_0), gen_0':s3_0(n285_0)) → true, rt ∈ Ω(1 + n2850)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
f

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol f.

(16) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
<=(gen_0':s3_0(n285_0), gen_0':s3_0(n285_0)) → true, rt ∈ Ω(1 + n2850)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)

(19) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
<=(gen_0':s3_0(n285_0), gen_0':s3_0(n285_0)) → true, rt ∈ Ω(1 + n2850)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
<=(0', y) → true
<=(s(x), 0') → false
<=(s(x), s(y)) → <=(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, -(z, s(x)), u)
f(s(x), s(y), z, u) → if(<=(x, y), f(s(x), -(y, x), z, u), f(x, u, z, u))

Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
<= :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)